Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Journal of the Textile Institute ; 2023.
Article in English | Scopus | ID: covidwho-2320876

ABSTRACT

The global COVID-19 pandemic has triggered a huge demand for the protective nonwovens. However, the main raw material of nonwovens comes from petroleum, and the massive consumption of petroleum-based polymers brings great pressure to ecosystem. Therefore, it is significant to develop biodegradable protective barrier products. In this work, a polylactic-based composite (a tri-layer nonwovens composed of spunbond, meltblown and spunbond, SMS) was prepared and applied for protective apparel. The surface morphology and chemical changes of the fibers were characterized and analyzed by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and energy dispersive spectroscopy (EDS). The liquid contact angle and permeability, breathability and moisture permeability, frictional charge and mechanical strength of the samples were evaluated and compared. The samples degradability was also recorded. The results demonstrate that the optimum formula for anti-fouling treatment on SMS is F-30. The treated fabric possesses superior liquid repellency and anti-permeability, with contact angles of water and alcohol at 128° and 115° respectively, while the alcohol repellent grade reaches level 7. The treated sample has less strength loss but exhibits favorable breathability, moisture permeability and anti-static properties, which can meet the requirements of protective apparels. After fluorine resin coating, the composite still provide excellent degradation performance, and the weight loss rate reaches more than 80% after 10 days water degradation. These results provide new insights for the application of PLA-based SMS in biodegradable protective apparel. © 2023 The Textile Institute.

2.
J Travel Med ; 2023 May 03.
Article in English | MEDLINE | ID: covidwho-2318201

ABSTRACT

BACKGROUND: Exposure to pathogens in public transport systems is a common means of spreading infection, mainly by inhaling aerosol or droplets from infected individuals. Such particles also contaminate surfaces, creating a potential surface-transmission pathway. METHODS: A fast acoustic biosensor with an antifouling nano-coating was introduced to detect SARS-CoV-2 on exposed surfaces in the Prague Public Transport System. Samples were measured directly without pre-treatment. Results with the sensor gave excellent agreement with parallel qRT-PCR measurements on 482 surface samples taken from actively used trams, buses, metro trains, and platforms between 7-9 April 2021, in the middle of the lineage Alpha SARS-CoV-2 epidemic wave when 1 in 240 people were COVID-19 positive in Prague. RESULTS: Only ten of the 482 surface swabs produced positive results and none of them contained virus particles capable of replication, indicating that positive samples contained inactive virus particles and/or fragments. Measurements of the rate of decay of SARS-CoV-2 on frequently touched surface materials showed that the virus did not remain viable longer than 1-4 hours. The rate of inactivation was the fastest on rubber handrails in metro escalators and the slowest on hard-plastic seats, window glasses, and stainless-steel grab rails. As a result of this study, Prague Public Transport Systems revised their cleaning protocols and the lengths of parking times during the pandemic. CONCLUSIONS: Our findings suggest that surface transmission played no or negligible role in spreading SARS-CoV-2 in Prague. The results also demonstrate the potential of the new biosensor to serve as a complementary screening tool in epidemic monitoring and prognosis.

3.
Acs Applied Nano Materials ; 6(5):3344-3356, 2023.
Article in English | Web of Science | ID: covidwho-2309589

ABSTRACT

Infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A (Flu A), and influenza B (Flu B) show similar clinical symptoms, such as cough, fever, and dyspnea, but patients infected by these viruses should be treated differently. The rapid and accurate diagnosis of infections caused by SARS-CoV-2, Flu A or Flu B is critical during the influenza season. Herein, we synthesized core-shell magnetic particles (MNPs) with excellent antifouling properties and applied them in the MNP-based immunochromatographic test (MICT) for simultaneous detection of SARS-CoV-2, Flu A, and Flu B nucleocapsid(N) proteins in 20 min. Two kinds of carboxyl -modified MNPs, MNP@pMBAA and MNP@Si-SA, were prepared and evaluated as probes in the MICT. Among them, the MNP@ pMBAA showed lower nonspecific adsorption of proteins and low background noise in the application in MICTs. Particularly, the MNP@pMBAA50 bead-based MICT strip exhibited the highest signal-to-noise ratio for SARS-CoV-2 N protein detection with a limit of detection (LOD) of 0.072 ng/mL. Moreover, the proposed MICT strip demonstrated a minimal cross-reactivity and a broad linear dynamic detection range under a magnetic assay reader in the simultaneous detection of SARS-CoV-2, Flu A, and Flu B N proteins with relative LOD values of 0.0086, 0.012, and 0.018 ng/mL, respectively. The results demonstrated that the synthesized MNPs showed great potential for use as MICT probes for sensitive and multiplex detection of biomarkers in the development of point-of-care testing systems.

4.
VIEW ; 3(3), 2022.
Article in English | Scopus | ID: covidwho-2270080

ABSTRACT

Pharmaceutical drugs and vaccines require the use of material containers for protection, storage, and transportation. Glass and plastic materials are widely used for packaging, and a longstanding challenge in the field is the nonspecific adsorption of pharmaceutical drugs to container walls – the so-called "sticky containers, vanishing drugs” problem – that effectively reduces the active drug concentration and can cause drug denaturation. This challenge has been frequently discussed in the case of the anticancer drug, paclitaxel, and the ongoing coronavirus disease 2019 (COVID-19) pandemic has brought renewed attention to this material science challenge in light of the need to scale up COVID-19 vaccine production and to secure sufficient quantities of packaging containers. To reduce nonspecific adsorption on inner container walls, various strategies based on siliconization and thin polymer films have been explored, while it would be advantageous to develop mass-manufacturable, natural material solutions, especially ones involving pharmaceutical grade excipients. Inspired by how lipid nanoparticles have revolutionized the vaccine field, in this perspective, we discuss the prospects for developing lipid bilayer coatings to prevent nonspecific adsorption of pharmaceutical drugs and vaccines and how recent advances in lipid bilayer coating fabrication technologies are poised to accelerate progress in the field. We critically discuss recent examples of how lipid bilayer coatings can prevent nonspecific sticking of proteins and vaccines to relevant material surfaces and examine future translational prospects. © 2021 The Authors. VIEW published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd.

5.
ACS Applied Nano Materials ; 2022.
Article in English | Scopus | ID: covidwho-2269280

ABSTRACT

Infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A (Flu A), and influenza B (Flu B) show similar clinical symptoms, such as cough, fever, and dyspnea, but patients infected by these viruses should be treated differently. The rapid and accurate diagnosis of infections caused by SARS-CoV-2, Flu A or Flu B is critical during the influenza season. Herein, we synthesized core-shell magnetic particles (MNPs) with excellent antifouling properties and applied them in the MNP-based immunochromatographic test (MICT) for simultaneous detection of SARS-CoV-2, Flu A, and Flu B nucleocapsid(N) proteins in 20 min. Two kinds of carboxyl-modified MNPs, MNP@pMBAA and MNP@Si-SA, were prepared and evaluated as probes in the MICT. Among them, the MNP@pMBAA showed lower nonspecific adsorption of proteins and low background noise in the application in MICTs. Particularly, the MNP@pMBAA50 bead-based MICT strip exhibited the highest signal-to-noise ratio for SARS-CoV-2 N protein detection with a limit of detection (LOD) of 0.072 ng/mL. Moreover, the proposed MICT strip demonstrated a minimal cross-reactivity and a broad linear dynamic detection range under a magnetic assay reader in the simultaneous detection of SARS-CoV-2, Flu A, and Flu B N proteins with relative LOD values of 0.0086, 0.012, and 0.018 ng/mL, respectively. The results demonstrated that the synthesized MNPs showed great potential for use as MICT probes for sensitive and multiplex detection of biomarkers in the development of point-of-care testing systems. © 2023 American Chemical Society.

6.
Biosens Bioelectron ; 225: 115101, 2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2288794

ABSTRACT

The electrochemical biosensor with outstanding sensitivity and low cost is regarded as a viable alternative to current clinical diagnostic techniques for various disease biomarkers. However, their actual analytical use in complex biological samples is severely hampered due to the biofouling, as they are also highly sensitive to nonspecific adsorption on the sensing interfaces. Herein, we have constructed a non-fouling electrochemical biosensor based on antifouling peptides and the electroneutral peptide nucleic acid (PNA), which was used as the recognizing probe for the specific binding of the viral RNA of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Different from the negatively charged DNA probes that will normally weaken the biosensors' antifouling capabilities owing to the charge attraction of positively charged biomolecules, the neutral PNA probe will generate no side-effects on the biosensor. The biosensor demonstrated remarkable sensitivity in detecting SARS-CoV-2 viral RNA, possessing a broad linear range (1.0 fM - 1.0 nM) and a detection limit down to 0.38 fM. Furthermore, the sensing performance of the constructed electrochemical biosensor in human saliva was nearly similar to that in pure buffer, indicating satisfying antifouling capability. The combination of PNA probes with antifouling peptides offered a new strategy for the development of non-fouling sensing systems capable of assaying trace disease biomarkers in complicated biological media.


Subject(s)
Biofouling , Biosensing Techniques , COVID-19 , Nucleic Acids , Peptide Nucleic Acids , Humans , Peptide Nucleic Acids/chemistry , Biofouling/prevention & control , Saliva , Biosensing Techniques/methods , COVID-19/diagnosis , Electrochemical Techniques/methods , SARS-CoV-2 , Peptides/chemistry , Biomarkers
7.
Small ; : e2205281, 2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2173456

ABSTRACT

The development of simple, cost-effective, rapid, and quantitative diagnostic tools remains critical to monitor infectious COVID-19 disease. Although numerous diagnostic platforms, including rapid antigen tests, are developed and used, they suffer from limited accuracy, especially when tested with asymptomatic patients. Here, a unique approach to fabricate a nanochannel-based electrochemical biosensor that can detect the entire virion instead of virus fragments, is demonstrated. The sensing platform has uniform nanoscale channels created by the convective assembly of polystyrene (PS) beads on gold electrodes. The PS beads are then functionalized with bioreceptors while the gold surface is endowed with anti-fouling properties. When added to the biosensor, SARS-CoV-2 virus particles block the nanochannels by specific binding to the bioreceptors. The nanochannel blockage hinders the diffusion of a redox probe; and thus, allows quantification of the viral load by measuring the changes in the oxidation current before and after virus incubation. The biosensor shows a low limit of detection of ≈1.0 viral particle mL-1 with a wide detection range up to 108 particles mL-1 in cell culture media. Moreover, the biosensor is able to differentiate saliva samples with SARS-CoV-2 from those without, demonstrating the potential of this technology for translation into a point-of-care biosensor product.

8.
Macromol Biosci ; 23(4): e2200479, 2023 04.
Article in English | MEDLINE | ID: covidwho-2173286

ABSTRACT

The artificial lung has provided life-saving support for pulmonary disease patients and recently afforded patients with severe cases of COVID-19 better prognostic outcomes. While it addresses a critical medical need, reducing the risk of clotting inside the device remains challenging. Herein, a two-step surface coating process of the lung circuit using Zwitterionic polysulfobetaine methacrylate is evaluated for its nonspecific protein antifouling activity. It is hypothesized that similarly applied coatings on materials integrated (IT) or nonintegrated (NIT) into the circuit will yield similar antifouling activity. The effects of human plasma preconditioned with nitric oxide-loaded liposome on platelet (plt) fouling are also evaluated. Fibrinogen antifouling activities in coated fibers are similar in the IT and NIT groups. It however decreases in coated polycarbonate (PC) in the IT group. Also, plt antifouling activity in coated fibers is similar in the IT and NIT groups and is lower in coated PC and Tygon in the IT group compared to the NIT group. Coating process optimization in the IT lung circuit may help address difference in the coating appearance of outer and inner fiber bundle fibers, and the NO-liposome significantly reduces (86%) plt fouling on fibers indicating its potential use for blood anticoagulation.


Subject(s)
COVID-19 , Liposomes , Humans , Liposomes/metabolism , COVID-19/metabolism , Blood Platelets/metabolism , Lung , Adsorption
9.
J Nanobiotechnology ; 20(1): 112, 2022 Mar 05.
Article in English | MEDLINE | ID: covidwho-1717964

ABSTRACT

BACKGROUND: The endotracheal tube (ETT) is an essential medical device to secure the airway patency in patients undergoing mechanical ventilation or general anesthesia. However, long-term intubation eventually leads to complete occlusion, ETTs potentiate biofilm-related infections, such as ventilator-associated pneumonia. ETTs are mainly composed of medical polyvinyl chloride (PVC), which adheres to microorganisms to form biofilms. Thus, a simple and efficient method was developed to fabricate CS-AgNPs@PAAm-Gelatin nanocomposite coating to achieve dual antibacterial and antifouling effects. RESULTS: The PAAm-Gelatin (PAAm = polyacrylamide) molecular chain gel has an interpenetrating network with a good hydrophilicity and formed strong covalent bonds with PVC-ETTs, wherein silver nanoparticles were used as antibacterial agents. The CS-AgNPs@PAAm-Gelatin coating showed great resistance and antibacterial effects against Staphylococcus aureus and Pseudomonas aeruginosa. Its antifouling ability was tested using cell, protein, and platelet adhesion assays. Additionally, both properties were comprehensively evaluated using an artificial broncho-lung model in vitro and a porcine mechanical ventilation model in vivo. These remarkable results were further confirmed that the CS-AgNPs@PAAm-Gelatin coating exhibited an excellent antibacterial capacity, an excellent stain resistance, and a good biocompatibility. CONCLUSIONS: The CS-AgNPs@PAAm-Gelatin nanocomposite coating effectively prevents the occlusion and biofilm-related infection of PVC-ETTs by enhancing the antibacterial and antifouling properties, and so has great potential for future clinical applications.


Subject(s)
Biofouling , Metal Nanoparticles , Nanocomposites , Pneumonia, Ventilator-Associated , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms , Biofouling/prevention & control , Humans , Intubation, Intratracheal , Pneumonia, Ventilator-Associated/microbiology , Pneumonia, Ventilator-Associated/prevention & control , Silver/pharmacology , Swine
10.
25th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2021 ; : 1487-1488, 2021.
Article in English | Scopus | ID: covidwho-2012716

ABSTRACT

The COVID-19 pandemic has demonstrated the need for better understanding of the kinetics of anti-SARSCoV-2 antibody production and development of serological assays for multiple viral antigens. Electrochemical (EC) sensor platforms offer the potential to develop rapid, sensitive, point-of-care (POC) diagnostics for this type of application. Here, we describe multiplexed EC biosensors with novel antifouling properties that detect anti-SARSCoV-2 immunoglobulin G (IgG) against spike protein (S), spike receptor-binding domain (RBD), and nucleocapsid (NC) antigens. This POC assay was validated using 69 clinical blood samples and obtained 96% sensitivity and 100% specificity with area under the curve (AUC) of 0.98 for multiplexed detection of anti-SARS-CoV-2 IgG. © 2021 MicroTAS 2021 - 25th International Conference on Miniaturized Systems for Chemistry and Life Sciences. All rights reserved.

11.
ACS Appl Bio Mater ; 5(8): 3870-3882, 2022 08 15.
Article in English | MEDLINE | ID: covidwho-1960237

ABSTRACT

Biofilm formation on the surfaces of indwelling medical devices has become a growing health threat due to the development of antimicrobial resistance to infection-causing bacteria. For example, ventilator-associated pneumonia caused by Pseudomonas and Staphylococci species has become a significant concern in treatment of patients during COVID-19 pandemic. Nanostructured surfaces with antifouling activity are of interest as a promising strategy to prevent bacterial adhesion without triggering drug resistance. In this study, we report a facile evaporative approach to prepare block copolymer film coatings with nanoscale topography that resist bacterial adhesion. The initial attachment of the target bacterium Pseudomonas aeruginosa PAO1 to copolymer films as well as homopolymer films was evaluated by fluorescence microscopy. Significant reduction in bacterial adhesion (93-99% less) and area coverage (>92% less) on the copolymer films was observed compared with that on the control and homopolymer films [poly(methacrylic acid) (PMAA)─only 40 and 23% less, respectively]. The surfaces of poly(styrene)-PMAA copolymer films with patterned nanoscale topography that contains sharp peaks ranging from 20 to 80 nm spaced at 30-50 nm were confirmed by atomic force microscopy and the corresponding surface morphology analysis. Investigation of the surface wettability and surface potential of polymer films assists in understanding the effect of surface properties on the bacterial attachment. Comparison of bacterial growth studies in polymer solutions with the growth studies on coatings highlights the importance of physical nanostructure in resisting bacterial adhesion, as opposed to chemical characteristics of the copolymers. Such self-patterned antifouling surface coatings, produced with a straightforward and energy-efficient approach, could provide a convenient and effective method to resist bacterial fouling on the surface of medical devices and reduce device-associated infections.


Subject(s)
Bacterial Adhesion , COVID-19 , Biofilms , Humans , Pandemics , Polymers/chemistry
12.
View ; 3(3), 2022.
Article in English | ProQuest Central | ID: covidwho-1870940

ABSTRACT

Pharmaceutical drugs and vaccines require the use of material containers for protection, storage, and transportation. Glass and plastic materials are widely used for packaging, and a longstanding challenge in the field is the nonspecific adsorption of pharmaceutical drugs to container walls – the so‐called “sticky containers, vanishing drugs” problem – that effectively reduces the active drug concentration and can cause drug denaturation. This challenge has been frequently discussed in the case of the anticancer drug, paclitaxel, and the ongoing coronavirus disease 2019 (COVID‐19) pandemic has brought renewed attention to this material science challenge in light of the need to scale up COVID‐19 vaccine production and to secure sufficient quantities of packaging containers. To reduce nonspecific adsorption on inner container walls, various strategies based on siliconization and thin polymer films have been explored, while it would be advantageous to develop mass‐manufacturable, natural material solutions, especially ones involving pharmaceutical grade excipients. Inspired by how lipid nanoparticles have revolutionized the vaccine field, in this perspective, we discuss the prospects for developing lipid bilayer coatings to prevent nonspecific adsorption of pharmaceutical drugs and vaccines and how recent advances in lipid bilayer coating fabrication technologies are poised to accelerate progress in the field. We critically discuss recent examples of how lipid bilayer coatings can prevent nonspecific sticking of proteins and vaccines to relevant material surfaces and examine future translational prospects.

13.
Nanomaterials (Basel) ; 12(3)2022 Feb 06.
Article in English | MEDLINE | ID: covidwho-1686908

ABSTRACT

Biofilm-associated infections caused by an accumulation of micro-organisms and pathogens significantly impact the environment, health risks, and the global economy. Currently, a non-biocide-releasing superhydrophobic surface is a potential solution for antibacterial purposes. This research demonstrated a well-designed robust polydimethylsiloxane (PDMS) micro-structure and a flame treatment process with improved hydrophobicity and bacterial anti-adhesion properties. After the flame treatment at 700 ± 20 °C for 15 s, unique flower-petal re-entrant nano-structures were formed on pillars (PIL-F, width: 1.87 ± 0.30 µm, height: 7.76 ± 0.13 µm, aspect ratio (A.R.): 4.14) and circular rings with eight stripe supporters (C-RESS-F, width: 0.50 ± 0.04 µm, height: 3.55 ± 0.11 µm, A.R.: 7.10) PDMS micro-patterns. The water contact angle (WCA) and ethylene glycol contact angle (EGCA) of flame-treated flat-PDMS (FLT-F), PIL-F, and C-RESS-F patterns were (133.9 ± 3.8°, 128.6 ± 5.3°), (156.1 ± 1.5°, 151.5 ± 2.1°), and (146.3 ± 3.5°, 150.7 ± 1.8°), respectively. The Escherichia coli adhesion on the C-RESS-F micro-pattern with hydrophobicity and superoleophobicity was 42.6%, 31.8%, and 2.9% less than FLT-F, PIL-F, and Teflon surfaces. Therefore, the flame-treated C-RESS-F pattern is one of the promising bacterial anti-adhesion micro-structures in practical utilization for various applications.

14.
20th IEEE Sensors, SENSORS 2021 ; 2021-October, 2021.
Article in English | Scopus | ID: covidwho-1672878

ABSTRACT

The current COVID-19 pandemic has become a worldwide problem with more than 169 million people infected by May 2021. Here we demonstrate a unique technology, based on the quartz crystal microbalance method, for the rapid detection of SARS-CoV-2. This biosensor fulfils all of the many requirements for the rapid detection of SARS-CoV-2 in complex samples. This is achieved by a tailored antifouling surface post-modified with antibodies against SARS-CoV-2 nucleocapsid protein (N). The A-QCM profits from absence of sample pre-treatment and utilizes the natural properties of N protein, which forms complexes with vRNA. Thanks to this, the clinically relevant LOD of 6.7×103 PFU/mL was reached using one-step detection assay. The A-QCM biosensor was also validated with clinical samples (i.e. nasopharyngeal swabs) with full agreement with qRT-PCR. The A-QCM biosensor was also utilized for the presence of SARS-CoV-2 in surface swabs in means of public transport. © 2021 IEEE.

15.
Proc Zool Soc ; 74(4): 591-604, 2021.
Article in English | MEDLINE | ID: covidwho-1595601

ABSTRACT

The most representative organisms of the Harbor of Gaeta Gulf in South Italy were analyzed for biofouling by visual census and confirmed later by molecular approach on an artificial Conatex panel dipped 3 m into a eutrophic area during the Covid-19 pandemic. Mitochondrial Cytochrome C oxidase subunit 1(COI) gene was sequenced from 20 different marine species (flora: 2 families, 2 orders; fauna: 16 families, 11 orders) to test whether the morphology-based assignment of the most common biofouling member was supported by DNA-based species identification. Twelve months of submersion resulted in generation of sufficient data to obtain a facies climax represented mainly by the bivalve mollusk, Mytilus galloprovincialis. Specific diversity and variations of the biofouling biomasses were analyzed using two different anti-biofouling paints: an endocrine disrupting chemical (EDC)-containing metal biocide, and a biocide-free paint. Also, their effects on detoxification and reproductive health of M. galloprovincialis were evaluated using glutathione S-transferase enzymatic activity and RTqPCR expression of the fertility antioxidant gene glutathione peroxidase 4 (gpx4). The obtained data provide useful indications on which future investigations may be focused and may become a potential management tool for a harbor biofouling database to assist local administrations in EDCs protection of autochthonous benthic communities and their fertility using innovative antifouling paints.

16.
Chem Eng Sci ; 242: 116749, 2021 Oct 12.
Article in English | MEDLINE | ID: covidwho-1260680

ABSTRACT

During the outbreak of COVID-19, the fogging of goggles was a fatal problem for doctors. At present, there are many ways to prevent fogging by adjusting surface wettability. However, the mechanical properties of most super-hydrophilic antifogging coatings are poor, easy to lose their antifogging properties when encountering fingers or cloth friction. To address this issue, the Konjac Glucomannan was cross-linked with water-soluble silicone fluid to form a binder, then being combined with the modified Ecokimera to prepare an eco-friendly super-hydrophilic coating that possessed excellent super-hydrophilicity, and the water contact angle (WCA) was 2.51 ± 1°. In addition, the WCA is still about 5° after 180 times of antifogging tests. The friction resistance of the coating was as high as 24 m. Moreover, the light transmittance was only reduced by 3%. Besides, they also had the excellent self-cleaning property. After being stored in the laboratory environment for 90 days, it can still maintain the hydrophilic property (WCA is about 5°). In general, the method proposed in this study is low-cost and eco-friendly, and can be widely used in the preparation of antifogging coatings.

17.
Chem Eng J ; 418: 129368, 2021 Aug 15.
Article in English | MEDLINE | ID: covidwho-1135272

ABSTRACT

The ongoing pandemic caused by the novel coronavirus has turned out to be one of the biggest threats to the world, and the increase of drug-resistant bacterial strains also threatens the human health. Hence, there is an urgent need to develop novel anti-infective materials with broad-spectrum anti-pathogenic activity. In the present study, a fluorinated polycationic coating was synthesized on a hydrophilic and negatively charged polyester textile via one-step initiated chemical vapor deposition of poly(dimethyl amino methyl styrene-co-1H,1H,2H,2H-perfluorodecyl acrylate) (P(DMAMS-co-PFDA), PDP). The surface characterization results of SEM, FTIR, and EDX demonstrated the successful synthesis of PDP coating. Contact angle analysis revealed that PDP coating endowed the polyester textile with the hydrophobicity against the attachment of different aqueous foulants such as blood, coffee, and milk, as well as the oleophobicity against paraffin oil. Zeta potential analysis demonstrated that the PDP coating enabled a transformation of negative charge to positive charge on the surface of polyester textile. The PDP coating exhibited excellent contact-killing activity against both gram-negative Escherichia coli and gram-positive methicillin-resistant Staphylococcus aureus, with the killing efficiency of approximate 99.9%. In addition, the antiviral capacity of PDP was determined by a green fluorescence protein (GFP) expression-based method using lentivirus-EGFP as a virus model. The PDP coating inactivated the negatively charged lentivirus-EGFP effectively. Moreover, the coating showed good biocompatibility toward mouse NIH 3T3 fibroblast cells. All the above properties demonstrated that PDP would be a promising anti-pathogenic polymeric coating with wide applications in medicine, hygiene, hospital, etc., to control the bacterial and viral transmission and infection.

SELECTION OF CITATIONS
SEARCH DETAIL